Présentation de Talend Open Studio for Big Data
- Problématique du Big Data : le modèle de 3V, les cas d'usage.
- L'écosystème Hadoop (HDFS, MapReduce, HBase, Hive, Pig...).
- Données non structurées et bases de données NoSQL.
- TOS for Big Data versus TOS for Data Integration.
Travaux pratiques
Installation/configuration de TOS for Big Data et d'un cluster Hadoop (Cloudera ou Hortonworks), vérification du bon fonctionnement.
Intégration de données dans un cluster et des bases de données NoSQL
- Définition des métadonnées de connexion du cluster Hadoop.
- Connexion à une base de MongoDB, Neo4j, Cassandra ou Hbase et export de données.
- Intégration simple de données avec un cluster Hadoop.
- Capture de tweets (composants d’extension) et importation directe dans HDFS.
Travaux pratiques
Lire des tweets et les stocker sous forme de fichiers dans HDFS, analyser la fréquence des thèmes abordés et mémorisation du résultat dans HBase.
Import / Export avec SQOOP
- Utiliser Sqoop pour importer, exporter, mettre à jour des données entre systèmes RDBMS et HDFS.
- Importer/exporter partiellement, de façon incrémentale de tables.
- Importer/Exporter une base SQL depuis et vers HDFS.
- Les formats de stockage dans le Big Data (AVRO, Parquet, ORC…).
Travaux pratiques
Réaliser une migration de tables relationnelles sur HDFS et réciproquement.
Effectuer des manipulations sur les données
- Présentation de la brique PIG et de son langage PigLatin.
- Principaux composants Pig de Talend, conception de flux Pig.
- Développement de routines UDF.
Travaux pratiques
Dégager les tendances d’utilisation d’un site Web à partir de l’analyse de ses logs.
Architecture et bonnes pratiques dans un cluster Hadoop
- Concevoir un stockage efficient dans HADOOP.
- Datalake versus Datawarehouse, doit-on choisir ?
- HADOOP et le Plan de Retour d’Activité (PRA) en cas d’incident majeur.
- Automatiser ses workflows.
Travaux pratiques
Créer son datalake et automatiser son fonctionnement.
Analyser et entreposer vos données avec Hive
- Métadonnées de connexion et de schéma Hive.
- Le langage HiveQL.
- Conception de flux Hive, exécution de requêtes.
- Mettre en œuvre les composants ELT de Hive.
Travaux pratiques
Stocker dans HBase l’évolution du cours d’une action, consolider ce flux avec Hive de manière à matérialiser son évolution heure par heure pour une journée donnée.